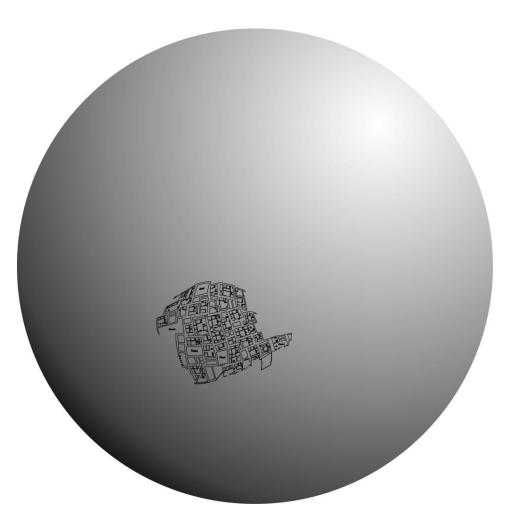
### INTERACTION MAXIMIZATION AND THE OBSERVED DISTRIBUTION OF URBAN POPULATIONS

An agent-based model of humanity's metric condition

André Ourednik and Pierre Dessemontet Chôros Laboratory EPFL-ENAC-INTER




#### "Why are there cities?" - a classical answer:

- Spatially concentrated populations have a competitive advantage in comparison with more dispersed populations:
  - More efficient use of human capacities
    - Specialization and division of labor
    - Scale economy
  - More efficient use of natural resources
    - Culture-driven innovation
    - Specialization in agriculture
  - Security
    - Mutual help
    - Military defense power
  - More differentiated context for the constitution of individual identity
    - Cultural / spiritual /religious self-awareness
    - Additional degrees of individual freedom

# There should be just one city

Why didn't the early stages of world urbanization lead to the emergence of just one city?



# **Our hypothesis**

There is an upper limit to urban growth:

This limit is due to a phenomenon of **spatial friction**, acting upon the very interactions that make urban configurations auspicious

The interaction most sensitive to this phenomena is the one existing between **food producers** and **urban specialists**.

## **Purpose and method**

- Hypothesis extensively supported by literature (ex.: van der Woude/ Hayami / Vries 1995; Falk 2005)
- Objective: Make the hypothesis explicit by articulating macrophenomena (total or partial spatiodemographic concentration) to micro-motives and –behaviors (individual settlement strategies)
- Method:
- 1. Setting up an agent-based model of an early urban settlement system (proto-neolithic period).
- Simulating the effects of spatial friction on population concentration/scattering, under diverse levels of interactioninduced benefits

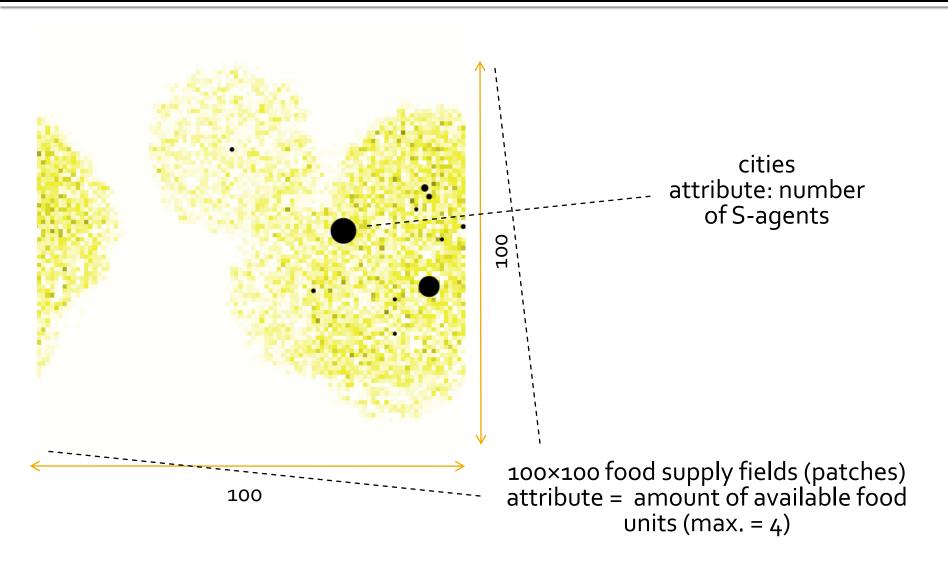
### An agent-based model: 3 elements

- Resource fields
- City centers
- Agents
  - A food producers
  - S urban specialists



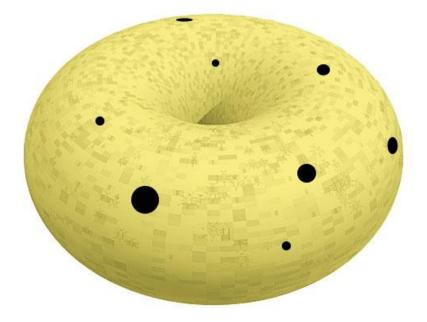
# The A-agents: food producers

- Agents whose interest lies in maximum dispersion, i.e., in the occupation of a maximum amount of land.
- Not advantaged by demographic concentration per se, but advantaged by the contact with urban specialists, whose technical knowledge allows for an increased land-use return
- Eventually stimulated by the city as a source of consumption goods and services




# The S-agents: urban specialists



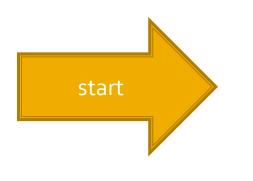

- They live in cities, because directly interested in a population concentration, allowing them to
  - share resources
  - share knowledge pertaining to their activities
  - take advantage of the market efficiency of a centralized position
- They depend on food producers
- They increase agricultural production by
  - providing more efficient production tools and techniques
  - producing consumption goods, stimulating the agricultural production

#### Model space: cities and resources



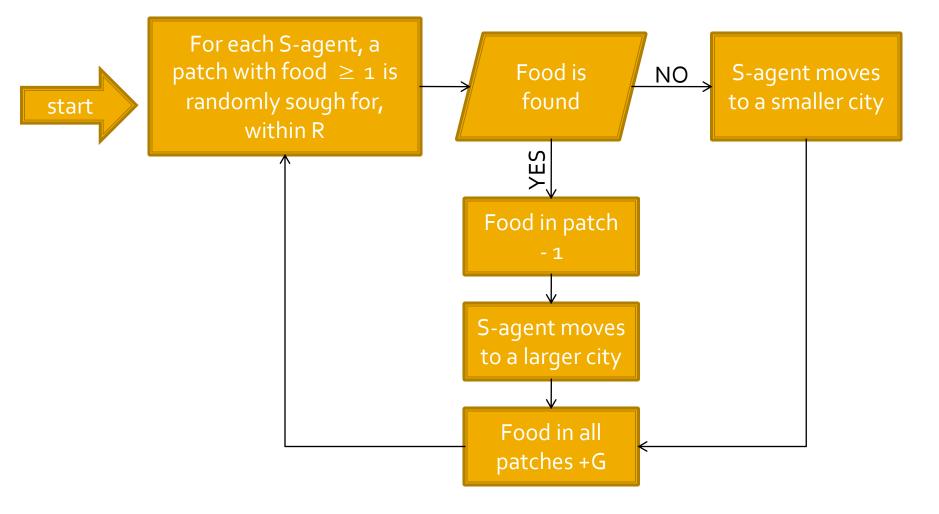
#### Model space: cities and resources

#### wrapped topology to avoid border effects



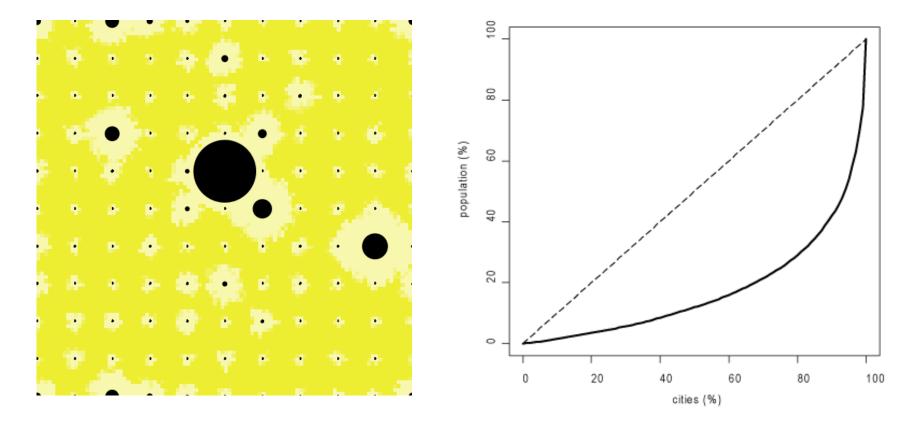

#### **Global variables (user-set parameters)**

- global reach (R) (btw. o and 40 patch-widths):
  - How far away from a city are resources still accessible to the city dwellers
  - Simulates the ability to overcome spatial friction. It is inversely
    proportional to costs of transport of raw materials to town and of
    manufactured goods to the country
- a grow-back rate (G) (btw. o and 4 food-units / time-unit)
  - Rate, per time iteration, by which food resources are renewed
  - G is equal for all food-supply fields
  - Simulates land-use return
    - Agent productivity
    - Resource type: G(hunting and gathering) < G(wheat) < G(potatoes) < G(rice)</li>

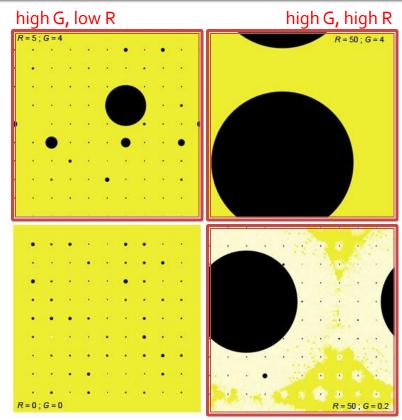

# Model dynamics (1<sup>st</sup> version)

- Initial conditions:
  - a regular 10x10 grid of 100 cities
  - ~ 42 S-agents / city
  - A-agents merged with food-production patches
  - each patch set to maximum of resources (=max.)
  - user-set G and R




# Model dynamics (1<sup>st</sup> version)

#### Constrained maximization of spatial concentration




### The 1<sup>st</sup> experiment: results

#### Urban network hierarchy with R=10; G=1; 200<sup>th</sup> iteration



## The 1<sup>st</sup> experiment: results



# \*\*\*\*\*\*\*\*\*\*\*\*\* 000000000 gini-index growback reach

Network hierarchy measured my the Gini-index. and its dependence on R and G ; 200<sup>th</sup> iteration

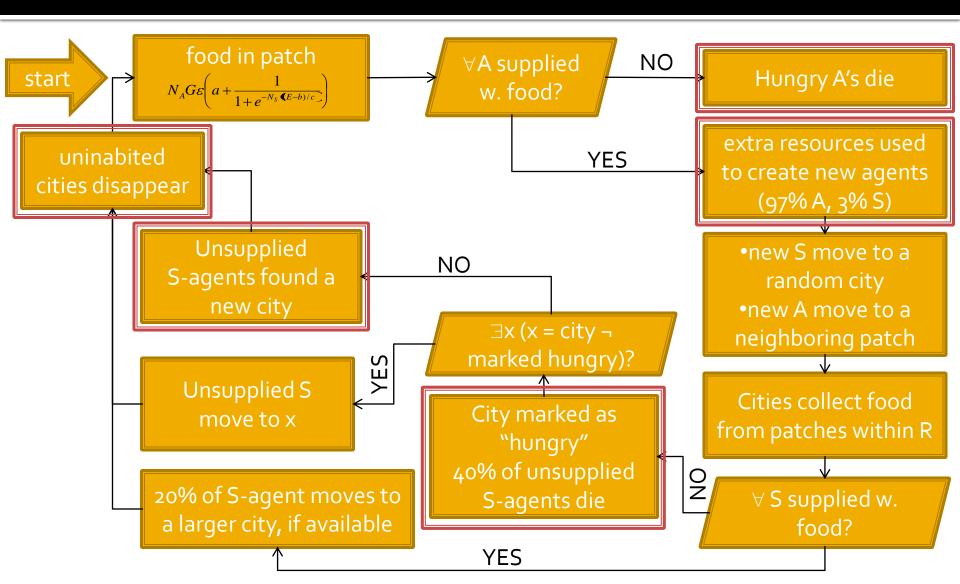
low G, high R

Clear impact of G (food production) and R (capacity to overcome spatial friction) on spatiodemographic concentration with a **predominance of the R parameter** 

### The 1<sup>st</sup> experiment: results

 Meaning: the multiplication of urban settlements can be explained by an insufficient food supply in larger urban areas, due to spatial friction and leading to a migration to less populated cities

# The limits of the 1<sup>st</sup> version


- Influence of S-agents on land-use return not simulated
- we want to see this influence
- Non-spontaneous determination of potential city locations & constant number of cities
  - 100 cities at all times
  - in the most concentrated cases, there are cities with zero dwellers
- we want to observe the emergence of a city network from a totally non-urbanized situation
- Demographic events reduced to migration
  - Invariant number of S-agents
  - Invariant proportion S-agents/ A-agents
- > We want to see agents appear and disappear
- We want to observe the variations urban% / rural% of total population

## The 2<sup>nd</sup> model version

- actual crop yield per patch := N<sub>A</sub>Ge (a + 1/(1 + e^{-N\_s (E-b)/c}))
   N<sub>A</sub> : population of food producers

  - $N_{\rm s}$  : population of urban specialists within R
  - E: the specialist-effect
  - ε: stochastic effect.
  - [a, b, c]: "constants" stochastically varying around an average
- agents can die (hunger) or be born (when there is food overproduction)
- cities can disappear and be spontaneously generated
- initial conditions: purely agricultural societies, S-agent can only be "born" in the context of an agricultural surplus

# Model dynamics (2<sup>nd</sup> version)



#### The 2<sup>nd</sup> model version: testing 3 parameters

- fertility (G)
  - extreme aridity to extreme productivity
- reach (R)
  - from sessility to unrestrained motility
- specialist effect (E)
  - from no effect to major gains in yield major influence of urban populations on crop yields

# The 2<sup>nd</sup> experiment: results



- Fertile land & long reach
  - large population
  - highly stable system
  - apparition of large towns (~3) Urban pop: 33%
- Fertile land & short reach
  - large population
  - highly stables system
  - 25 to 30 small towns. Urban pop.: 2%
- Infertile land & average reach & average specialist-effect
  - more chaotic system, greater amplitude of network hierarchy var.
  - 5 to 10 small towns, urban pop: ~15%
- Arid land & average reach & high specialist-effect
  - very chaotic behavior
  - a society unable to survive without urban specialists
  - very small towns
  - In some cases, the society does not survive.

# The 2<sup>nd</sup> experiment: results

#### High G and R, but no specialist-effect



### Web site

#### http://www.ourednik.info/urbanization\_mc

# The 2<sup>nd</sup> experiment: results

- Observation: there is an extreme diversity in outcomes according to varying initial parameters. The system is chaotic.
  - Many scenarios of early urban development can be simulated by our simple 3-par. model.

#### The model shows...

- why some societies emerge cities while other do not.
- that urban development in limit situations is highly sensitive to stochastic conditions in comparison with fertile conditions.
- why the global urban network does not consist of just one city

### Perspectives

- More explicitly defined units (km, kJ, kg, etc.)
- Take more phenomena into account :
  - The effects of specialization diversity
    - more types and levels of spetialization
  - The effects of economic cycles:
    - bumper crop years vs dust bowl years to replace « dumb » stochasticity
  - The advent of economic exchange and market effects.
  - Parasitic agent strategies (plundering) & emergence of state and military power
  - The advent scientific and technical progress

### Web site

#### http://www.ourednik.info/urbanization\_mc